The geodetic number of lexicographic product of graphs ∗

نویسندگان

  • Tadeja Kraner Šumenjak
  • Aleksandra Tepeh
چکیده

A set S of vertices of a graph G is a geodetic set if every vertex of G lies in an interval between two vertices from S. The size of a minimum geodetic set in G is the geodetic number g(G) of G. We find that the geodetic number of the lexicographic product G ∘H for non-complete graphs H lies between 2 and 3g(G). We characterize the graphs G and H for which g(G ∘H) = 2, as well as the lexicographic products T ∘H that enjoy g(T ∘H) = 3g(G), when T is isomorphic to a tree. Using a new concept of the so-called geodominating triple of a graph G, a formula that expresses the exact geodetic number of G ∘H is established, where G is an arbitrary graph and H a non-complete graph. ∗Work supported in part by the Ministry of Science and Technology of Slovenia under the grants J1-2043 and P1-0297. The authors are also with the Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct edge geodetic decomposition in graphs

Let G=(V,E) be a simple connected graph of order p and size q. A decomposition of a graph G is a collection π of edge-disjoint subgraphs G_1,G_2,…,G_n of G such that every edge of G belongs to exactly one G_i,(1≤i ≤n). The decomposition 〖π={G〗_1,G_2,…,G_n} of a connected graph G is said to be a distinct edge geodetic decomposition if g_1 (G_i )≠g_1 (G_j ),(1≤i≠j≤n). The maximum cardinality of π...

متن کامل

NUMBER OF SPANNING TREES FOR DIFFERENT PRODUCT GRAPHS

In this paper simple formulae are derived for calculating the number of spanning trees of different product graphs. The products considered in here consists of Cartesian, strong Cartesian, direct, Lexicographic and double graph. For this purpose, the Laplacian matrices of these product graphs are used. Form some of these products simple formulae are derived and whenever direct formulation was n...

متن کامل

Further Results on Betweenness Centrality of Graphs

Betweenness centrality is a distance-based invariant of graphs. In this paper, we use lexicographic product to compute betweenness centrality of some important classes of graphs. Finally, we pose some open problems related to this topic.

متن کامل

The edge geodetic number and Cartesian product of graphs

For a nontrivial connected graph G = (V (G), E(G)), a set S ⊆ V (G) is called an edge geodetic set of G if every edge of G is contained in a geodesic joining some pair of vertices in S. The edge geodetic number g1(G) of G is the minimum order of its edge geodetic sets. Bounds for the edge geodetic number of Cartesian product graphs are proved and improved upper bounds are determined for a speci...

متن کامل

On the geodetic number and related metric sets in Cartesian product graphs

A set S of vertices of a graph G is a geodetic set if every vertex of G lies in at least one interval between the vertices of S. The size of a minimum geodetic set in G is the geodetic number of G. Upper bounds for the geodetic number of Cartesian product graphs are proved and for several classes exact values are obtained. It is proved that many metrically defined sets in Cartesian products hav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011